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We provide a detailed description of the decomposition of a conformal repeller
by the level sets of the Lyapunov exponent, along with a similar result for
Axiom-A surface difftfomorphisms.

KEY WORDS: Axiom-A surface difftfomorphism; conformal repeller; dimen-
sion spectrum; expanding map; Hausdorff dimension; Lyapunov exponent;
Lyapunov spectrum; multrifractal analysis; pointwise dimension.

I. INTRODUCTION

Lyapunov exponents measure the exponential rate of divergence of
infinitesimally close orbits of a smooth dynamical system. These exponents
are intimately related to the global stochastic behavior of the system and
are fundamental invariants of a smooth dynamical system. In [EP],
Eckmann and Procaccia suggested an analysis of Lyapunov exponents for
chaotic dynamical systems. This suggestion was further investigated on a
physical level by Szépfalusy and Tél [ST] and by Tél [ T], but no authors
have been able to provide rigorous proofs. In Sections II and III, we effect
a rigorous analysis for conformal repellers and Axiom-A surface diffeo-
morphisms and gain new insights into the distribution of Lyapunov expo-
nents, including the precise values attained by the Lyapunov exponents, the
size and structure of the corresponding level sets, and the size and structure
of the set of points for which the exponent does not exist.

These results are examples of a multifractal analysis in the extended
sense. The traditional notion of multifractal analysis involves decomposing
a fractal set into the level sets of the pointwise dimension. In our general
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concept of multifractal analysis, one studies the fundamental invariants in
smooth ergodic theory (including Lyapunov exponents, local entropy,
Birkhoff averages, and pointwise dimension) and effects a comprehensive
analysis of the complicated decomposition of the phase space into level sets
of these invariants. Important elements of the analysis should include deter-
mining the precise range of values these invariants attain, a thorough
analysis of the topological and dimension properties of the level sets, and
an understanding of the sets where the limits do not exist.

An important tool in studying these questions is the Lyapunov spec-
trum, which records the Hausdorff dimension of the level sets for the
Lyapunov exponent. We show that for most conformal repellers, this spec-
trum (map) is real analytic and strictly convex on an interval. It follows
that the range of the Lyapunov exponent contains an open interval of
values and hence the Lyapunov exponent attains uncountably many dis-
tinct values. For each value in this interval, we construct an equilibrium
state fully supported on the corresponding level set. This implies that the
level sets are dense in the repeller. We also prove similar results for most
Axiom-A surface diffeomorphisms.

It is quite striking that while the Lyapunov exponent is intrinsically
only a measurable function and the level sets in the decomposition are
extremely intertwined, the Lyapunov spectrum, which encodes this very
complicated decomposition, is smooth and convex.

Our strategy consists of first establishing a simple link between the
Lyapunov spectrum and the dimension spectrum for the measure of maxi-
mal entropy and then using results from [ PW2, PW3] on the dimension
spectrum to obtain analogous results for the Lyapunov spectrum. These
results are the first application of the multifractal analysis, currently a very
popular area of research, to an object other than pointwise dimension.

One intriguing dynamical consequence is a rigidity result for rational
maps which says that if the Lyapunov exponent for a hyperbolic rational
map attains only countably many values, then the map must be of the form
z— z*" for some neZ.

We then apply a result in [ BS] and conclude that for most nonformal
repellers, there is a dense set of maximal Hausdorff dimension on which the
Lyapunov exponent does not exist, along with the analogous results for the
positive and negative exponents for an Axiom-A surface diffeomorphism.
This observation complements the results mentioned above, and together
they yield, for certain classes of hyperbolic dynamical systems, a complete
picture of the extremely complicated decomposition by level sets of the
Lyapunov exponent.

Finally, we present a simple rigidity result for a geodesic flow on a
negatively curved surface involving the.Lyapunov exponents. This is a
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geometric counterpart to the rigidity result mentioned above for rational
maps.

II. CONFORMAL REPELLERS

Let M be a smooth manifold and g: M — M a C'*? map for y>0.
Suppose that J is a compact invariant subset of M (g(J)=J), and consider
the map g restricted to J. We say that g is a conformal expanding map and
J is conformal repeller if there exists a Riemannian metric on J and a func-
tion a(x) such that for all xeJ we have that dg,=a(x) Isom(x), where
Isom(x) denotes an isometry of T.J, dg, is the differential of g at x, and
la(x)| > 1 forall x € J. Clearly a(x) = ||dg, ||. Furthermore, we require that the
map g|J be a local homeomorphism. Examples of conformal expanding
maps include Markov maps of an interval, rational maps with hyperbolic
Julia sets, and conformal toral endomorphisms. We will follow custom and
refer to g as a conformal repeller.

We define the Lyapunov exponent of g at x by

) 1 1 n—1
7(x)= lim —log ||ldg?| == log [] la(g"(x))|
n—->o N n k=0

if the limit exists. If the limit exists at a point x, then y(x) is uniformly
bounded away from zero since y(x)>=min,;log |a(x)|>0. Let v be an
invariant Borel probability measure for g which is supported on J. It follows
from the Subadditive Ergodic Theorem that y(x) exists on a total proba-
bility set, i.e., a set that has full measure with respect to each invariant
measure. This function is measurable but typically is not continuous.

If the measure v is ergodic, for example if v is an equilibrium state (see
Appendix) on J, then y(x) =1v=jJ10g la(x)| dv(x) for v-almost every
xeJ, and we obtain the decomposition of the repeller J by

J={xeJ:iy(x)=xtu U {xelJ:ixx)=p}
BeR\{x,}

U {xeJ: y(x) does not exist}

We call y, the Lyapunov exponent of v.

There are several fundamental questions related to this decomposition.
Do there exist points x such that y(x) exists but does not equal y,? Since
the v measure of this set is zero, what is the Hausdorff dimension of this
set? What values are attained by y(x)? Do there exist points x such that
x(x) does not exist, and if so, what is the Hausdorff dimension of this set?
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Since Lyapunov exponents are fundamental invariants of a smooth dynam-
ical system, it seems important to have a good understanding of this decom-
position.

To study related questions, Eckmann and Procaccia defined the
Lyapunov spectrum for the map g by

I(f)=dimy Lg, where Ly={xeJ:y(x)=p}

and dimg L, denotes the Hausdorff dimension of the level set Ls. The
Lyapunov spectrum will be a major tool in our analysis.

The second ingredient in our analysis is the dimension spectrum (for
pointwise dimension). The dimension spectrum is one of the principle com-
ponents in the multifractal analysis of measures on fractals. In [ PW2] the
authors effect a complete multifractal analysis of equilibrium states for con-
formal repellers and in [ PW3] the authors effect a complete multifractal
analysis of equilibrium states for Axiom-A surface diffeomorphisms.

Let v be an invariant Borel probability measure on J for g. Given xeJ
we consider the pointwise dimension of v at x,

) — tim 122 (BE )
r—0 log r

if the limit exists, where B(x, r) denotes the ball of radius r centered at x.
We call a measure v exact dimensional if there exists a number s such that
d,(x)=s for v-almost every point xeJ. In [PW1] we show that equi-
librium states for conformal repellers are exact dimensional and d,(x)=
h,(g)/x,, where h,(g) is the measure theoretic entropy of g.

The multifractal analysis is a description of the fine-scale geometry
of the set J whose constituent components are the level sets K, ,=
{xeJ:d(x)=a} for aeR. The dimension spectrum, denoted by f,(a), is
defined by

fv(a) = dlmH Kv, o

We now discuss a symbolic model for the conformal repeller and a
method for computing the pointwise dimension of equilibrium states using
the symbolic model. It is well known that conformal repellers have Markov
partitions consisting of partition elements R = {R,,..., R,,} with arbitrarily
small diameter such that each set R, is the closure of its interior R,,
J=U;R;, zi,.mzéj:@ unless 7= j, and each g(R;) is a union of sets R;
[R2].

The Markov partition generates a symbolic model of g on J by a one-
sided subshift of finite type (X'}, o) where A4 is the incidence matrix of the
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Markov partition and o: 2} — X'} is the shift map. This gives a coding
map z: X' 7 — J which is Holder continuous, surjective, and injective on the
set of points whose trajectories never intersect the boundary of any element
of the Markov partition. With respect to this coding map, the shift map
models g, ie., moo=gon. Furthermore, the cardinality of 7 ~'(x) is
uniformly bounded for all xeJ. The pullback by n of any Holder con-
tinuous function on J is Hoélder continuous on X} . Furthermore, the
pushforward of any Gibbs measure (see Appendix) on X} is an equi-
librium measure on J and the pullback of any equilibrium state on J is a
Gibbs measure on 2} [Bo].

Define the Markov balls

4; .., =R;ng lRizm e Ng n+1Rin
where g ~' denotes a branch of the inverse of g’. By the Markov property,
every Markov ball has the property that 4; ..., =R; N g*"“Rin.

The pointwise dimension is defined using metric balls. However the
approach we take to study pointwise dimension essentially replaces balls by
Markov balls in the definition of pointwise dimension. For a point x € J we

consider the quantity

log v(4;,...;(x))
lim —
n—o log diam(4,; ...; (x))

where 4, ...; (x) denotes the Markov ball at level n that contains the point x.
The careful reader will notice that this quantity is not well defined for
points x whose orbit intersects the boundary of the Markov partition.
Although the boundary has measure zero with respect to any ergodic
measure, it may have positive Hausdorff dimension.

To overcome this technical difficulty, we define the analogous quantity
on the symbolic model. This will give a new notion of local dimension
which can rightfully be called the Markov or symbolic pointwise dimen-
sion. It is not a priori clear, and requires a nontrivial proof, that for equi-
librium states these two notions of local dimension essentially coincide.
This is the content of Theorem 2.2. We caution the reader that in the multi-
fractal literature, a large number of authors claim to prove results about
pointwise dimension but actually only prove results about Markov point-
wise dimension. The main advantage of working with Markov pointwise
dimension is that for equilibrium states, the measure of Markov balls can
be uniformly estimated using symbolic dynamics. Also, the repeller J can
be naturally viewed as a limit set for a geometric construction using these
Markov balls [ PW1].



620 Weiss

Let & be a Hélder continuous function on J and v = v, the corresponding
equilibrium state for g. Denote by &* the pull back of & under the coding
map 7, ie., {*=<&om, and by u=p. the Gibbs measure corresponding
to &*. Given a number « > 0 define

K {weZ* lim log i Cy(@)) —oc} (1)

a n—e log [T Zg la(z(a (@) ="

where C,(w) denotes the n-cylinder that contains the point w. A routine
application of the Jacobian estimate [ KH] shows that if x = z(w) then

)= lim CEILiZolalme @Dl _ —%log diam(4, .., (x))

n— oo n n— oo

The following useful theorem says that for equilibrium states, the
Markov pointwise dimension (defined for points w in the symbolic model
by (1)) coincides with the pointwise dimension (at n(w)) on J.

Theorem 2.1 [PW1]. Let g:J—J be a C'*? nonformal repeller,
let v be an equilibrium state corresponding to a Holder continuous func-
tion, and let u be the pullback (Gibbs) measure (see Appendix) on X7} .

(1) For every coel%ﬂ,a we have that d,(x)=a, where x =(w).

(2) For every xe K, , there exists @ EIQ/N such that n(w) = x.

In other words, n(Ieﬂ, J=K

v, o

Ruelle [R1] showed that the Hausdorff dimension d of J is given by
Bowen’s formula P(—dlog |a|) =0, where P is the thermodynamic pressure
(see Appendix), and that the d-Hausdorff measure is equivalent to the equi-
librium state vy, corresponding to the Holder continuous potential
—d log |a|. The measure vy, plays a special role in the multifractal analysis
and we call this measure the measure of maximal dimension. Let v,
denote the measure of maximal entropy for g, ie., the equilibrium state for
a constant potential.

The following theorem is part of the multifractal analysis of equi-
librium states for conformal repellers.

Theorem 2.2 [PW2]. Let g:J—J be a C!*7 conformal repeller
and let v=v, be the equilibrium state corresponding to the Holder con-
tinuous potential &.
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(1) If v# vg4im, then f,(a) is real analytic and strictly convex on an
interval 0 <a, <a <o, < 0.

(2) For each a; <a<a,, there exists an equilibrium state v, on J
such that v (K, ,) =1. It follows® that the sets K, , are dense in J.

(3) If one defines T(q) by requiring that P(—T(q)log |a(x)|+
q(&—P(&))=0, then oy = —lim,_, ,, T'(¢) and a, = —lim,_, ., T'(q).

(4) I Viyax=Vaim,» then f, (a)=dimyJ for a=dimyJ and
Sy, (0) =0 for a #dimy J.

The following theorem establishes a formula for the pointwise dimen-
sion of a measure involving the Lyapunov exponent and provides the link
between the Lyapunov spectrum and the dimension spectrum. The proof of
this statement with pointwise dimension replaced by Markov pointwise
dimension is quite elementary. However proving this formula for actual
pointwise dimension is not trivial and seems to be a new result.

Theorem 2.3. Let g:J—J be a C'*” conformal expanding map
and let v=v, be the equilibrium state corresponding to the Holder con-
tinuous potential . Then

d.(x) = P(E) —c(x) _hfg)+ [ &dv—E(x) 2)
2(x) 2(x)

provided that &(x) and y(x) exist, where

n—1

f()—hm*Zf

n—o N ie
denotes the Birkhoff average of ¢ and 4,(g) denotes the measure theoretic
entropy of the map g with respect to the measure v [ W].

Proof. Let R be a Markov partition for g and let ¢ be the pullback
of v under the coding map n. Then by the Gibbs property of u there exist
positive constants D, and D, such that for all o

D, exp (nz £4(0%()) —nP(é*)>

n—1

<ﬂ(cn(60))<DzeXP< Z ¢ >—nP(f*)>

2 This follows since equilibrium states are fully supported on J and assign positive measure to
all non-trivial open subsets.
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If x=n(w), then since n is uniformly bounded-to-one, we have that
P(&*)=P(&) and thus

e loeu(Cle) & —PE)_PEO—Ex)
ne log [Tb la(a( @)™ —2(x)  2(¥)

The theorem immediately follows from Theorem 2.2. ||

For the particular choice of potential &(x) = —slog |dg, | we obtain
the following formula for the Lyapunov exponent.

Corollary 2.1. The Lyapunov exponent

() Postog )
g d,(x)—s
where 4, is the equilibrium state for —slog ||dg, ||.

Letting s =0 we obtaining the following simple formula

Corollary 2.2. The Lyapunov exponent

htop
o =

where h,,,(g) denotes the topological entropy of the map g and iy,
denotes the measure of maximal entropy.

Assume that the Lyapunov exponent y(x) exists at a point x. For an
arbitrary equilibrium state, the numerator in (2) may or may not be
defined for this value of x. However, for the measure of maximal entropy,
the numerator a/lways exists and equals the topological entropy. Thus for
all xe Ly we have that d, (x) = h,(g)/P.

We present several applications of this remark. The first application
establishes the link between the Lyapunov spectrum and the dimension
spectrum for the measure of maximal entropy and is an immediate applica-
tion of Theorem 2.2 and Corollary 2.2.

Theorem 2.4. Let g:J—J be a C'*” conformal repeller. Then
(1) If Viax # Vaim» then the function /(f)=f, (hp(g)/f) is real
analytic and strictly convex on an interval 0 <, <f < f, < o0.

(2) For each B, <f<p,, there exists an equilibrium state 7, on J
such that #4(Lg) = 1. It follows that the level sets L are dense in J.
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(3) If one defines T(q) by requiring that P(—T(q)log |a(x)|—
qhop(g)) =0, then gy = —lim,_, ,, T'(¢q) and f,= —lim,_, _, T'(q).

(4) If Vpax =Vaim, then I(f)=d for f=h,(g)/d and [(f)=0 for
B # hop(g)/d, where d =dimy J and h,,(g) is the topological entropy of g.

Remarks. (1) Since the sets L are dense, one cannot replace the
Hausdorff dimension in the definition of the Lyapunov spectrum /(f) by
box dimension, for the box dimension of a set coincides with the box
dimension of the closure of the set. This would lead to a trivial spectrum
of dimensions.

(2) Applying Simpelaere’s variational formula [ Si], Schmelling [ Sc]
has shown that the Lyapunov spectrum [ f;, f,] is full, in that y(x) attains
no values f¢[ S, f> 1.

(3) Itis an immediate consequence of the Birkhoff Ergodic Theorem
that there does not exist any ergodic invariant measure which assigns
positive measure to the set of points for which the Lyapunov exponent
does not exist.

The next proposition follows immediately from Theorem 2.4

Proposition 2.1. Let g:J—J be a C'*? conformal repeller for
which v, # V4im- Then the range of y(x) contains an open interval, and
hence the function y(x) attains uncountably many distinct values.

We obtain the following rigidity result as a simple corollary of
Proposition 2.1.

Proposition 2.2. Let g:J—J be a C'*” conformal repeller. If
the Lyapunov exponent y(x) attains only countable many values, then

Vmax = Vdim-

Combining this proposition with a theorem of Zdunik [ Z], we obtain
an interesting rigidity theorem for hyperbolic rational maps.

Theorem 2.5. If the Lyapunov exponent of a rational map having
a hyperbolic Julia set attains only countably many values, then the map
must be of the form z — z*”,

Let g: J—J be a conformal expanding map and v an equilibrium
state. In [BS] (which is an extension of previous work in [Sh]), the
authors show the set of points where the pointwise dimension of v does
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not exist typically has full Hausdorff dimension, i.e., the Hausdorff dimen-
sion coincides with the Hausdorff dimension of J, provided that v # vg,.
Applying this result and Corollary 2.2 to the measure v,,, we obtain the
following result.

max

Proposition 2.3. Let g: J— J be a conformal expanding map such
that v, #Vam- Then the set of points for which y(x) does not exist is
dense and the Hausdorff dimension of this set coincides with the Hausdorff
dimension of J.

Il. AXIOM-A SURFACE DIFFEOMORPHISMS

Let M be a smooth surface and f/: M — M a C'*? diffeomorphism for
y>0. A compact f-invariant subset 4 = M is called hyperbolic if there exists
a continuous splitting of the tangent bundle 7, M = E*® E* into two sub-
spaces and constants C>0 and 0 <1< 1 such that for every xe A

(1) dfE*(x)=E*(f(x)), dfE*(x) = E*(f(x));
(2) foralln=0

|ldf™| < Ci* |lv]  if veE*(x)
|df ="l < CA™ |lvl|  if veE*(x)

The subspaces E°(x) and E*(x) are called stable and unstable subspaces
at x respectlvely Deﬁne the continuous functions «*(x) = ||df | E*(x)| and
=||df | E*(x
It is well- known (see for example, [ KH]) that for every x € 4 one can
construct one-dimensional local stable and unstable local manifolds, Wi, (x)
and Wi (x) which have the following properties:

loc\ X
) xe Wi (x), xe Wi (x);

loc

4) T Wi (x)=E(x), T, Wi(x)=E*(x);
5) S(Wiee()) € Wioe( f(x)), [ THWioe(x)) = Wiee(f ~H(x)):
)

6) there exist K>0 and 0 <u <1 such that for every n>0

3
(
(
(

pf"(y), f1(x)) < Ku"p(y,x)  forall ye Wy, (x)

and

pf"y), f7M(x)) < Ku"p(y,x)  forall yeWj (x)

where p is the distance in M induced by the Riemannian metric.
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A hyperbolic set A is called locally maximal if there exists a neighbor-
hood U of A such that for any closed f-invariant subset A’ < U we have
A" = A. In this case

—oo<n< o

A point xe M is called non-wandering if for each neighborhood U of x
there exists n > 1 such that f*(U) n U +# . We denote by Q(f) the set of
all non-wandering points of f. It is a closed f-invariant set. A diffeo-
morphism f is called an Axiom-A diffeomorphism if Q(f) is a locally
maximal hyperbolic set. If f'is an Axiom-A diffeomorphism then Q(f) can
be decomposed into a finite number of disjoint closed f-invariant sets,
Q(f)y=4,0v --- u4,, such that f'| A4, is topologically transitive. Each set
A; 1s said to be a basic set of f. See [ KH] for a more complete description.
We will henceforth assume that f: 4 — A, where 4 is a basic set.

Let ¢ be a Holder continuous function on 4 and let v = v, be the equi-
librium state for f corresponding to . We remind the reader that a finite
cover Z={R,,.., R,} of A is called a Markov partition for f if

(1) Each rectangle R, is the closure of its interior R,;.
(2) The set Ro,-r\Rojz & unless i = j.
(3) For each xe R,n f~(R,) we have

J(Wiaelx) 0 Ry) @ Wi (f(X)) N R;
J(Wiee(x) 0 Ry) > Wio (f(x)) N R,

Bowen [Bo] gave a construction of Markov partitions for Axiom-A
diffeomorphisms which is an essential tool for our multifractal analysis.
Let # be a Markov partition of A with transition matrix 4 = (a;, ;). Denote
by 2, the set of all allowable two sided sequences of integers
(verigi_yigiy-+), 1€, a;; =1 for every n. We define the coding map
n. X, — A by

n(w)=x= () R, ..., where R; .
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This coding map = is Holder continuous, surjective, and injective on
the set of points whose orbits never intersect the boundary of any element
of the Markov partition.

Let a®(x) and a*(x) be the contraction and expansion coefficients of
f along the stable and unstable directions, and #* and #* the unique roots
of Bowen’s equations P(7log|a’(x)|)=0 and P(—tlog |a“(x)])=0). In
[MM], Manning and McCluskey show that d=dim, 4 ="+ t*.

Let R(x) be a rectangle in the Markov partion which contains the
point x. For every ye R(x) denote by mj the conditional measure on
W*(y) n R(x) generated by the equilibrium state for —¢*log |a*(x)| =0
and denote by m; the conditional measure on W*(y) N R(x) generated by
the equilibrium state for ¢°log |a’(x)|. The reference [ P2, Appendix I1]
contains a detailed discussion of the construction of conditional measures.

The following theorem is part of the multifractal analysis of equilibrium
states on basic sets of Axiom-A surface difftomorphisms. It was first proved
by Simpelaere [Si]. In [ PW1] an alternate proof was presented.

Given an invariant probability measure v, the dimension spectrum,
denoted by f,(«), is defined for a =0 by

Sflo)=dimy, K, , where K, ,={xed|d,(x)=a}

Theorem 3.1 [Si, PW3]. Letf: 4 — Abea C'*? Axiom-A surface
diffeomorphism. Let v = v, be an equilibrium state for a Holder continuous
potential.

(1) [Y] The measure v is exact dimensional, i.e., the pointwise
dimension d,(x) exists for v-almost every x e A and

1 1
40 =) ===
X Xy
where h,(f) is the measure theoretic entropy of fand y;}, . are positive
and negative Lyapunov exponents of v, i.e.,

=l @) and =] @l dx)

A A

(2) If v|R(x) is not equivalent to m*xm" for any xe A (or equiv-
alently v is not the measure of maximal dimension) then the dimension
spectrum f,(a) is real analytic and strictly convex on an interval 0 <oy <
o <o, < 00.
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(3) Ifv|R(x) is equivalent to m*xm* for some (and thus all) x € 4,
then f, (a)=dimy A for a=dimy A and f, (a)=0 for o #dimy 4.

Let 4 be a basic set for an Axiom-A surface diffeomorphism
[+ M — M. Define the positive and negative Lyapunov exponents y*(x) and

%~ (x) by
2 (x)= lim log ||df™ | E*(x)] — lim log Tz Zo @“(f“(x))

n— oo n n— oo n

and

}{_(x) — lim lOg de” | ES(X)H — lim log HZ;(I) as(fk(x))

n— oo n n— oo n

if the limits exist. Since df | E¥(x) is expanding and df | E*(x) is contracting,
if the limits exist they must be non-zero. If v is an invariant Borel probability
measure, it follows from the Subadditive Ergodic Theorem that y *(x) and
x~ (x) exist for v almost every x and define f~invariant measurable functions.

Let L ={xeA|y"(x)=p}. Consider the following decomposition
of the set A associated with values of the Lyapunov exponent y*(x) at
points x € A

A=) Lfu{xed|x*(x) does not exist}
BeRT

If v is an ergodic measure for f, then y*(x)=y . for v-almost every
xeA. If v is the equilibrium state corresponding to a Holder continuous
function, this set is everywhere dense. We can ask the same questions about
this decomposition as we did in the case of conformal expanding maps.
In a similar spirit as for conformal expanding maps we introduce the
(positive) Lyapunov spectrum of f by

() =dimy L}

By slightly modifying the proof of Corollary 2.2 one can show that for all
xe Ly we have that dy (x)=hyp(f)/B, where dx (x) denotes the point-
wise dimension of the conditional measure induced by v,,, on the local
unstable manifolds. The next theorem now follows from Theorem 3.1.

Theorem 3.2. Let f:4— A be a C'*? Axiom-A surface diffeo-
morphism.
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(1) TIfv¥__|R(x)is not equivalent to m*| R(x) for any x € 4, then for

max

any x the Lyapunov spectrum 7 *(f) = f,« (h,(g)/f) is real analytic and

max

strictly convex on an interval 0 < f, <f < ff, < 0.
(2) For each ;< <p,, the set L; is dense in A.
(3) Ifv¥_ |R(x) is equivalent to m"* | R(x) for some (and hence all)

max

xed, then /*(f)=dimyA for f=h,(f)/dimyzA and /*(f)=0 for
B # hiop( f)/dim g A.

As immediate consequences of Theorem 3.2 we obtain the analogs of
the consequences of Theorem 2.4.

Proposition 3.1. Let f: 4 — A be a C'*7 Axiom-A surface diffeo-
morphism for which the measure v%, . | R(x) is not equivalent to the
measure m% | R(x) for any x € A. Then the range of y ¥ (x) contains an open
interval, and hence the Lyapunov exponent y*(x) attains uncountably
many distinct values.

We obtain the following rigidity result as a simple corollary of
Proposition 3.1.

Proposition 3.2. Let f: 41— 4 be a C'*7 Axiom-A surface diffeo-
morphism. If the Lyapunov exponent y *(x) attains only countably many
values, then v¥%_ | R(x) is equivalent to m% | R(x) for all x e 4.

max,

Let f:4— A be a C'*7 Axiom-A surface diffeomorphism and v an
equilibrium state for a Holder continuous potential. In [ BS], the authors
show that the set of points where the pointwise dimension of v does not
exist typically has full Hausdorff dimension, i.e., the Hausdorff dimension
coincides with the Hausdorff dimension of A. Applying this result to the
measure vp,, and recalling that dx (x) = hyop(g)/x " (x) for all xe A, we
obtain the following result. ’

Proposition 3.3. Let f: 41— A be a C'*7 Axiom-A surface diffeo-
morphism such that v is not equivalent to m? for any x. Then the set of

points for which y*(x) does not exist is dense and the Hausdorff dimension
coincides with the Hausdorff dimension of the basic set A.

Similar statements hold true for the negative Lyapunov spectrum of
f corresponding to negative values of the Lyapunov exponent y ~(x) at
points x € A. Also, as for conformal repellers, it follows from [ Sc] that the
Lyapunov exponents attain no other values than those which arise in
Theorem 2.4.
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IV. LYAPUNOV RIGIDITY FOR GEODESIC FLOWS ON
NEGATIVELY CURVED SURFACES

Geodesic flows constitute an important class of dynamical systems.
For instance, it follows from the Maupertuis Principle that every
holonomic mechanical system reduces to a geodesic flow. There is a
wonderful interplay between the geometry of the manifold and the
dynamics of the geodesic flow. Some results say a Riemannian manifold for
which the metric satisfies certain curvature estimates (e.g., everywhere
negative sectional curvatures) possesses a geodesic flow with stong
stochastic properties (ergodic and Bernoulli). Another more recent class of
results, so called rigidity results, say that certain strong dynamical condi-
tions for the geodesic flow on a Riemannian manifold (e.g., coincidence of
certain entopies) sometimes implies strong geometric consequences for the
underlying Riemannian metric (e.g., the metric is locally symmetric).

It is easy to establish a geometric analog of the (rigidity) Theorem 2.5
for geodesic flows on compact negatively curved surfaces. Let (M2, g) be a
compact negatively surface (the Gaussian curvature is negative at every
point). The geodesic flow is a flow on the unit tangent bundle SM? of M?
and can be described as follows: the transformation at time ¢ carries the
unit vector v located at the point x to the unit vector along the geodesic
eminating from x in the direction v with footpoint having distance ¢ from x.
Alternatively, the geodesic flow is the Lagrangian flow restricted to the unit
tangent bundle for the Lagrangian #(x, v) =1 g, (v, v). There is a natural
volume element 4 (Liouville measure) on the unit tangent bundle and the
geodesic flow preserves it.

Let y*(v) denote the positive Lyapunov exponent of the geodesic flow
at the vector v. Since the geodesic flow on a negatively curved surface is
ergodic with respect to the Liouville measure 4 [H, Ba], it follows that
2 (v)=y; for A-almost every v. We will show, in particular, that if y*(v)
attains only countably many values then the metric must have constant
negative curvature.

Theorem 4.1. Consider the geodesic flow on a negatively curved
surface. If the set of vectors such that y *(v) # x; has measure zero with
respect to the measure of maximal entropy v,,,, for the geodesic flow, then
the metric must have constant curvature.

max

Proof. Applying the Ruelle Entropy Inequality [ R3] and the Pesin
Entropy Formula [ P1] we have that

hon(&) <[ 2 0) dv(0) = [ 7 (0) dife) = hy(2)
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where h,(g) denotes the topological entropy and /,(g) denotes the
Liouville entropy of the time-1 map of the geodesic flow. It then follows
from Katok’s Entropy Rigidity theorem [ Ka] that the metric g must have
constant negative curvature. This proves the theorem. ||

As a special case we obtain the following corollary.

Corollary 4.1. Consider the geodesic flow on a negatively curved
surface. If the set of vectors such that y*(v)#y; is countable, then the
metric must have constant curvature.

APPENDIX

This Appendix contains essential definitions and facts from thermo-
dynamic formalism. For details consult [ Bo, R2, W]. Let X denote a com-
pact metric space and let C(X') denote the space of real valued continuous
functions on X.

1. Let g: X — X be a continuous map. We define the pressure function
P: C(X)— R by

P)= sup o)+ [ da)

neM(X)

where 9t X') denotes the set of g-invariant probability measures on X and
h,(g) denotes the measure theoretic entropy of the map g with respect
to the measure u. A Borel probability measure y=u, on X is called an
equilibrium state for the potential ¢ € C(X) if

P($)=h,g)+] ¢ du

3. Let X and Y be compact metric spaces and suppose y: X — Y is
a continuous surjection such that the cardinality of y~!(y) is uniformly
bounded for all ye Y. Then for any ¢e C(Y) we have that Py(¢)=

Py(doip).

4. Let ¢eC(X7). A Borel probability measure p=pu, on X7 is
called a Gibbs measure for the potential ¢ if there exist constants D, D, >0
such that

wlk k;=w;i=0,..,n—1}
1S a1 gk S D2
exp(—nP(¢) + X520 (o7 w))
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for all w =(wgw;---)eX} and n> 1. There are similar definitions for 2,
and 2.

5. For subshifts of finite type 2}, X', and X', Gibbs measures exist
for any Holder continuous potential ¢, are unique, and coincide with the
equilibrium state for ¢.
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